Вопрос задан 30.04.2020 в 06:02. Предмет Геометрия. Спрашивает Хорзова Вероника.

Прямая параллельная основаниям трапеции авсд пересекает ее боковые стороны ab cd в точках e и f,

найдите длину отрезка ef, если ad = 45, bc= 20, cf:df = 4:1
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рябоконь Мария.
Проводим прямую СК,параллельную боковой стороне АВ, получаем параллелограм АВСК. Верхнее основание трапеции ВС=20, значит ВС=АК=ЕО=20(О- точка пересечения прямых ЕF и СК). Далее Δ КСD подобен Δ ОСF по 2 углам( угол ОСF-общий, угол СОF=СКD-как соответственные углы при параллельных прямых ЕF и AD и секущей СК) CF/CD=OF/KD. Пусть 1 часть х, тогда CF=4x, FD=x, отсюда CD= 4x +x= 5x. Подставляем 4х/5х=OF/25 ( KD= AD- AK= 45-20=25)OF= 4x*25/5x=20. EF= EO+OF= 20+20=40
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос