
«основание пирамиды-треугольник со сторонами 20, 21 и 29 см. боковые грани образуют с плоскостью
основания углы 45. найдите объем пирамиды»

Ответы на вопрос

Когда грани имеют равный наклон, равны все треугольники, образованные высотой пирамиды, апофемой и её проекцией на основание - это прямоугольные треугольники с общим катетом и равными острыми углами между апофемой и её проекцией. То есть равны все апофемы и - что важнее - равны все проекции апофем на основание, что означает, что проекция вершины пирамиды на основание равноудалена от сторон основания, и проекции апофем - радиусы вписанной в основание окружности.
В этой задаче - угол между апофемой и радиусом вписанной окружности 45°, поэтому эти треугольники равнобедренные, и проекция любой апофемы на основание равна высоте пирамиды.
В основании лежит прямоугольный (Пифагоров, 20^2 + 21^2 = 29^2) треугольник, поэтому радиус вписанной окружности равен (20 + 21 - 29)/2 = 6;
Объем пирамиды (20*21/2)*6/3 = 420


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili