
Вопрос задан 15.04.2020 в 14:26.
Предмет Геометрия.
Спрашивает Ломов Валера.
Как доказать, что сумма медиан треугольника больше 3/4 суммы сторон треугольника?


Ответы на вопрос

Отвечает Габитов Айрат.
Точка пересечения медиан делит их (сами медианы) в пропорции 2/1, то есть кусок от вершины до точки пересечения равен 2/3 от медианы. Если записать три неравенства треугольника для трех треугольников, у которых две стороны - это вот такие куски медиан, а третья сторона - это сторона исходного треугольника, то получится
(2/3)*m1 + (2/3)*m2 > a;
(2/3)*m1 + (2/3)*m3 > b;
(2/3)*m2 + (2/3)*m3 > c;
Если все это сложить, то получится
4/3*(m1 + m2 + m3) > (a + b + c);
или
(m1 + m2 + m3) > (3/4)*(a + b + c);
ЧТД
(2/3)*m1 + (2/3)*m2 > a;
(2/3)*m1 + (2/3)*m3 > b;
(2/3)*m2 + (2/3)*m3 > c;
Если все это сложить, то получится
4/3*(m1 + m2 + m3) > (a + b + c);
или
(m1 + m2 + m3) > (3/4)*(a + b + c);
ЧТД


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili