Вопрос задан 15.04.2020 в 03:34. Предмет Геометрия. Спрашивает Васильева Полина.

Радіуси основ кульового поясу дорівнюють 3 і 4 см , а радіус кулі 5см. Знайти об"єм кульового поясу

якщо паралельні площини які перетинають кулю розміщені по один бік від центра кулі
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фламенкова Саша.

Формула объема шарового слоя:

V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.

Тогда по формуле имеем:

V=(1/2)*π*1*(16+9+1/3) = π*(76)/6 = (12и2/3)*π.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос