Вопрос задан 09.04.2020 в 09:22. Предмет Геометрия. Спрашивает Щербинин Семён.

В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите косинус угла между

плоскостями SAD и BCF, где F - середина ребра AS
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новик Полина.
Все просто решения в документе!!!!!!!!!!!!УДАЧИ))))))))
0 0
Отвечает Мариненко Нина.
Мне очень понравился коротенький документ в предыдущем решении, я вдохновился :) и сделал свой вариант.
Пусть начало координат находится в центре основания, а вершины лежат в точках 
А(1,0,0) B(0,-1,0) C(-1,0,0) D(0,1,0) S(0,0,1); ребра такой пирамиды равны √2, а не 1, но угол между плоскостями от этого не зависит.
Плоскость SAD отсекает на осях отрезки (ориентированные) 1,1,1, поэтому её уравнение x + y + z = 1;
 перпендикулярный этой плоскости вектор (1,1,1).
Для плоскости BCF известно, что она отсекает на оси X отрезок -1 и на оси Y тоже. Осталось выяснить, через какую точку на оси Z она проходит. 
В треугольнике BSD BF и SO – медианы, поэтому точка их пересечения отсекает от SO отрезок SO/3 = 1/3, и BF принадлежит плоскости BCF, то есть эта плоскость проходит через точку (0,0,1/3). 
Отсюда уравнение плоскости BCF:  -x - y + 3z = 1; перпендикулярный ей вектор (-1,-1, 3);
Угол между векторами (1,1,1) и (-1,-1,3) и есть искомый угол.
Модули векторов √3 и √11; скалярное произведение (-1 -1 + 3) =1; 
поэтому косинус угла равен 1/√33;

Примечание
Если известно, что плоскость проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости x/a + y/b + z/c = 1; доказать это элементарно, достаточно убедиться, что все три точки удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость. Это называется уравнение плоскости "в отрезках".
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос