Вопрос задан 09.04.2020 в 00:13. Предмет Геометрия. Спрашивает Швейко Саша.

Из точки к плоскости проведены две наклонные, угол между которыми равен 60*, а угол между их

проекциями - 90*. Длины проекций этих наклонных на плоскость равны 8 корней из 2. Вычислите их длины
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дунец Лиза.
наклонные касаются плоскости в точках А В
общая точка двух наклонных С
проекция точки С на плоскость - точка О
А0=В0=8*корень(2)

АВ=16 (по теореме пифагора)
АС=корень(АО^2+h^2)=корень(а^2+h^2)
ВС=корень(ВО^2+h^2)=корень(а^2+h^2)
АС=ВС
угол между АС и ВС - 60 градусов, значит АВС - равносторнний, значит искомые наклонные равны АС=ВС=АВ=16


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос