Вопрос задан 30.05.2018 в 23:03.
Предмет Геометрия.
Спрашивает Кисюк Диана.
Решите задачу) диогонали ромба равны 10 и 24 см.Найти расстояние от точки пересечения диогонали до
стороны ромбаОтветы на вопрос
Отвечает Шиллер Александра.
1) Находим площадь ромба АВСД: S=d1*d2/2=10*24/2=120(см кв)2)Находим АВ-сторону ромба.Для этого рассмотрим прямоугольный треугольник АОВ(О-точка пересечения диагоналей). АО=10:2=5(см), ВО=24:2=12(см).По теореме Пифагора АВ=sqrt{5^2+12^2}=sqrt{169}=13(см)3)Находим расстояние от точки О-точки пересечения диагоналей ромба до стороны ромба АВ. Оно равно высоте OH треугольника АОВ.Площадь треугольника АОВ равна 1/4 площади ромба, т.е. 120:4=30(см кв).S(AOB)=AB*OH/213*OH/2=3013*OH=60OH=60/13OH=4 8/13 (см)
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
