Вопрос задан 13.03.2020 в 05:05. Предмет Геометрия. Спрашивает Киров Дмитрий.

В кубе A..D1 надите синус угла между прямой A1D1 и плоскостью ACB1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ниязбекова Нурай.

1. поскольку A1D1 II CВ, то можно искать угол между АСВ1 и СВ.

2. Поскольку точка С принадлежит плоскости АСВ1, то для построения проекции СВ на АСВ1 достаточно построить проекцию точки В на эту плоскость.

3. Диагональное сечение DBB1D1 перпендикулярно прямой АС, поскольку в нем есть 2 прямых, перпендикулярных АС - это BD и ВВ1. Поэтому плоскости DBB1D1 и АСВ1 перпедикулярны (АСВ1 содержит прямую, пепендикулярную другой плоскости DBB1D1). Отсюда следует, что если в плоскости DBB1D1 выделить треугольник ВВ1О, где О - середина АС (центр квадрата АВСD), то высота ВМ, проведенная к гипотенузе ВО, и есть перпендикуляр к плоскости АВС1. В самом деле, ВМ перпендикулярно В1О и АС (напомню - АС перпендикулярно плоскости DBB1D1), то есть 2 прямым в плоскости АСВ1. 

4. Таким образом, точка М - проекция В на ACB1, и синус искомого угла равен ВМ/ВС. Пусть ВС = 1 (примем сторону куба за единицу длины). Найдем ВМ.

5. Для этого вернемся к треугольнику В1ВО. ВВ1 = 1; ВО = 1/корень(2); вычисляем В1О = корень(1 + 1/2) = корень(3/2);

ВМ*В1О = ВВ1*ВО; (это просто площадь тр-ка, записанная 2 способами)

ВМ = 1*(1/корень(2))/(корень(3/2)) = 1/корень(3);

это ответ.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос