
Вопрос задан 09.01.2020 в 09:22.
Предмет Геометрия.
Спрашивает Сокот Богдан.
Дано: ABCD - прямоугольник. Доказать АМ=ND



Ответы на вопрос

Отвечает Тауекелов Акпар.
Дано: ABCD - прямоугольник, СМ, BN - биссектрисы ∠С и ∠В. Доказать: АМ = ND
===========================================================
CM - биссектриса ∠С ⇒ ∠МCD = ∠BCM = ∠C/2 = 90°/2 = 45°
BN - биссектриса ∠В ⇒ ∠ABN = ∠CBN = ∠B/2 = 90°/2 = 45°
ΔABN = ΔCDM по катету и острому углу (АВ = CD, ∠ABN = ∠MCD) ⇒ AN = MD
AM = AN - MN , ND = MD - MN , но AN = MD
Значит, AM = ND, что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili