Вопрос задан 27.05.2018 в 00:57. Предмет Геометрия. Спрашивает Абельдинов Данияр.

Окружности радиусов 15 и 21 касаются внешним образом. Точки A и B лежат на первой окружности, точки

C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сницарёв Саша.

Пусть О₁ и О₂ - центры меньшей и большей окружностей соответственно, а также пусть О₁O₂ пересекает AB и CD в точках F и Е (см. рисунок). Опустим перпендикуляр O₁H на радиус O₂C. Тогда CH=AO₁=15 и
cos(∠O₁O₂H)=O₂H/O₁O₂=(21-15)/(21+15)=1/6.
Т.к. AO₁||CO₂ (они перпендикулярны AC), то ∠AO₁F=∠CO₂E=∠O₁O₂H.
Поэтому FO₁=AO₁cos(∠AO₁F)=15*1/6=5/2,
O₂E=CO₂cos(∠CO₂E)=21*1/6=7/2.
Отсюда искомое расстояние EF=FO₁+O₁O₂-O₂E=5/2+(15+21)-7/2=35.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос