
Вопрос задан 15.06.2019 в 02:34.
Предмет Геометрия.
Спрашивает Барашева Яна.
На поверхности шара лежат три точки С, D и Е такие, что CD = 7 см, DE = 8 см, CE = 9 см. Расстояние
от центра шара до плоскости треугольника СDE равно 1 см. Найдите площадь поверхности шара.Варианты ответов:а)383pi/6, б)84pi, в)(484pi/5)pi, г)92,2pi Нужно подробное решение!

Ответы на вопрос

Отвечает Сбродова Анастасия.
Через три точки можно провести плоскость и притом только одну. Это будет плоскость сечения шара - плоскость треугольника СDE. В сечении - окружность, которая является описанной для треугольника СDE. Радиус этой окружности находится по формуле R=(a*b*c)/[4*√p(p-a)(p-b)(p-c)]. В нашем случае R=7*8*9/4*√(12*5*4*3) = 2,1*√5. Центр этой окружности лежит на радиусе шара, перпендикулярном к плоскости сечения. Имеем прямоугольный тр-к ОО1Е с катетами 1см (расстояние от центра до плоскости сечения) и R и гипотенузой = Rшара. Отсюда по Пифагору находим R²шара = 1+(2,1*√5)² = 23,05см.
Площадь поверхности шара равна Sш=4πR²ш =92,2π
Площадь поверхности шара равна Sш=4πR²ш =92,2π


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili