Вопрос задан 06.06.2019 в 09:57. Предмет Геометрия. Спрашивает Прякина Полина.

ДОКАЖИТЕ, ЧТО ВСЕ РАВНЫЕ ХОРДЫ, ПРОВЕДЕННЫЕ В ДАННОЙ ОКРУЖНОСТИ, КАСАЮТСЯ НЕКОТОРОЙ ДРУГОЙ

ОКРУЖНОСТИ. ОПРЕДЕЛИТЕ ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ЭТОЙ И ДАННОЙ ОКРУЖНОСТЕЙ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Уляшова Машенька.
Если центры двух окружностей,- большей и меньшей, совпадают, то образуется кольцо, в котором все хорды большей окружности, касающиеся меньшей окружности, будут одного размера.
Пусть ОК - радиус больше окружности, АВ - хорда, касающаяся меньшей окружности в точке М, причём М∈ОК.
ОМ⊥АВ, значит МК⊥АВ.
В тр-ке прямоугольном ОАМ АМ=√(ОА²-ОМ²),
АВ=2√(ОА²-ОМ²).
Так как ОА и ОМ - это радиусы окружностей, центры которых совпадают, то АВ - константа.
Доказано.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос