
Основание остроугольного равнобедренного треугольника равно 48 см. Найдите радиус вписанной в него
окружности, если радиус описанной около него окружности равен 25 см.

Ответы на вопрос

Где то на высоте к основанию длины 48 лежит центр описанной окружности. Пусть расстояние от него до основания x, тогда x = h - R, где h - высота к основанию, R - радиус описанной окружности.
Легко видеть, что h = R + корень(R^2 - (a/2)^2), где а = 48. Подставляем R = 25, получаем h = 25 + 7 = 32 (тут сыграла Пифагорова тройка 7, 24, 25).
Легко видеть, что b = 40, где b - боковая сторона (а тут просто "египетский" треугольник 3,4,5; увеличенный в 8 раз, считайте все по теореме Пифагора, получите эти числа).
Периметр равен P = 128, а площадь S = 768, r = 2*S/P = 12
Мне предложили исправить решение, на том основании, что не понятно, как b стало равным 40. Возможно, я непонятно выразился, но прямоугольный треугольник, образованный половиной основания (то есть 24), высотой (32) и боковой стороной, имеет гипотенузу 40. Это можно вычислить "прямо" по теореме Пифагора. А можно просто заметить, что это треугольник подобен "египетскому" 3,4,5 (все стороны умножены на 8). В решении я это указал, и - как мне показалось, автор задачи это воспринял нормально. Жаль, если это не так. Пиношу свои извинения :))


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili