Вопрос задан 01.06.2019 в 17:24. Предмет Геометрия. Спрашивает Матула Олександр.

Основание остроугольного равнобедренного треугольника равно 48 см. Найдите радиус вписанной в него

окружности, если радиус описанной около него окружности равен 25 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Alekseenko Zhenya.

Где то на высоте к основанию длины 48 лежит центр описанной окружности. Пусть расстояние от него до основания x, тогда x = h - R, где h - высота к основанию, R - радиус описанной окружности.

Легко видеть, что h = R + корень(R^2 - (a/2)^2), где а = 48. Подставляем R = 25, получаем h = 25 + 7 = 32 (тут сыграла Пифагорова тройка 7, 24, 25).

Легко видеть, что b = 40, где b - боковая сторона (а тут просто "египетский" треугольник 3,4,5; увеличенный в 8 раз, считайте все по теореме Пифагора, получите эти числа).

Периметр равен P = 128, а площадь S = 768, r = 2*S/P = 12

 

Мне предложили исправить решение, на том основании, что не понятно, как b стало равным 40. Возможно, я непонятно выразился, но прямоугольный треугольник, образованный половиной основания (то есть 24), высотой (32) и боковой стороной, имеет гипотенузу 40. Это можно вычислить "прямо" по теореме Пифагора. А можно просто заметить, что это треугольник подобен "египетскому" 3,4,5 (все стороны умножены на 8). В решении я это указал, и - как мне показалось, автор задачи это воспринял нормально. Жаль, если это не так. Пиношу свои извинения :))

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос