
Вопрос задан 19.05.2018 в 05:13.
Предмет Геометрия.
Спрашивает Семёнов Кирилл.
Меньшая основная и боковая сторона равнобедренной трапеции соответственно равны 24 и 12см. Найдите
площадь трапеции, если её острый угол 60градусов

Ответы на вопрос

Отвечает Яковлев Саша.
Т.к. угол при основании равен 60°, то проводя высоту и получая прямоугольный треугольник, второй угол равен 30°. Тогда часть большего основания, лежащего напротив этого угла, равна 12/2 = 6, т.е. её половине. Аналогично и с другой стороной трапеции (т.к. она равнобедренная, то будет то же самое).
Теперь по теореме Пифагора найдём высоту:
h = √(12²-6²) = √(144-36) = √108 = 6√3. Теперь найдём всю длину большего основания:
Две части мы нашли (они равны по 6 см), а третья часть равна меньшему основанию, т.к. высоты образуют прямоугольник, а в прямоугольнике противоположные стороны равны. Тогда большее основание равно 6 + 6 + 24 = 36.
Теперь находим площадь по формуле S = 1/2(a+b)•h
S = 1/2(24+36)•6√3 = 30•6√3 = 180√3.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili