Вопрос задан 28.05.2019 в 10:24. Предмет Геометрия. Спрашивает Жуйкова Римма.

Центр вписанной окружности делит высоту равнобедренного треугольника опущенную на основание на

отрезки 5 и 3 см щитая от вершины.Определить стороны этого треугольника. ПОМОГИТЕ :(
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зайцева Елизавета.

Цент вписанно йокружности это точка перечечения биссектрисс 

 а в случае равнобедренного тр-ка - это точка, где биссектриса пересекает высоту. Высота равна 8, и делит равнобедренный треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза (боковая сторона исходного тр-ка) относится к катету (половине основания исходного тр-ка), как 5/3 - по свойству биссектрисы.

Поэтому эти прямоугольные треугольники подобны треугольнику со сторонами 3,4,5, то есть "египетскому". Раз высота 8, то две другие стороны 6 и 10, то есть в равнобедренном треугольнике боковые стороны равны 10, а основание 6*2 = 12.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос