Вопрос задан 12.05.2019 в 19:07. Предмет Геометрия. Спрашивает Маркова Оля.

.найдите площадь треугольника КМР,если сторона КР=5.,МЕДИАНА РО=3√2, угол КОР=135

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тименев Максим.

1. Теорема синусов для треугольника КОР
KP/sin KOP=OP/sin OKP
sin OKP=3*sqrt2*sqrt2/2/5=3/5
cos^2(OKP)=1-sin^2(OKP)=(4/5)^2
Т.к. КОР – тупой, то ОКР – острый,
cos OKP=4/5

2. sin OPK=sin(180-KOP-OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP
sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10

3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос