
Вопрос задан 12.05.2019 в 19:07.
Предмет Геометрия.
Спрашивает Маркова Оля.
.найдите площадь треугольника КМР,если сторона КР=5.,МЕДИАНА РО=3√2, угол КОР=135


Ответы на вопрос

Отвечает Тименев Максим.
1. Теорема синусов для треугольника КОР
KP/sin KOP=OP/sin OKP
sin OKP=3*sqrt2*sqrt2/2/5=3/5
cos^2(OKP)=1-sin^2(OKP)=(4/5)^2
Т.к. КОР – тупой, то ОКР – острый,
cos OKP=4/5
2. sin OPK=sin(180-KOP-OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP
sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10
3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili