Вопрос задан 09.05.2019 в 20:17. Предмет Геометрия. Спрашивает Петросян Павел.

Найдите косинус угла φ, образованного двумя боковыми гранями правильной четырехугольной пирамиды,

высота которой равна 4, а площадь диагонального сечения равна 12. В ответ запишите значение выражения 41cosφ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Топоровська Оля.
Площадь диагонального сечения пирамиды - это площадь треугольника
АSC=(1/2)*SO*AC. Отсюда АС=12*2/4=6.
В основании пирамиды - квадрат со стороной
АВ=ВС=СD=DA=3√2 (так как диагональ квадрата АС=BD=6).
OC=OB=3 (половина диагонали). SO=4 (дано).
Тогда SC=5, так как треугольник SOC - Пифагоров.
Из треугольника DSC высоту DH найдем из того, что по Пифагору:
DH²=DC²-CH² и DH²=DS²-SH².
Тогда DC²-CH²= DS²-SH². Отсюда, подставив известные значения, найдем НС.
18-НС²=25-(5-НС)²  =>  НС=1,8.
Тогда DН²=DC²-НС² = 18-3,24=14,76.
Угол между пересекающимися плоскостями равен линейному углу, образованному при пересечении этих плоскостей плоскостью, перпендикулярной линии их пересечения.
В нашем случае это угол <DHB.
По теореме косинусов из треугольника ВНD имеем:
Cosφ=(DH²+BH²-BD²)/2*DH*BH. Заметим, что DH=BH. Тогда
Cosφ=(2*14,76-36)/(2*14,76)=-6,48/29,52.
По условию в ответе надо получить 41*Cosφ.
41*Cosφ=41*(-6,48/29,52) = -9.
Ответ: 41*Cosφ=-9.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, сначала найдем значение косинуса угла φ.

Для начала, нам необходимо найти длину диагонали диагонального сечения пирамиды. Если площадь диагонального сечения равна 12, то можно воспользоваться формулой площади диагонального сечения пирамиды:

S = (1/2) * p * d,

где S - площадь диагонального сечения, p - периметр диагонального сечения, d - длина диагонали диагонального сечения.

Из условия задачи известно, что площадь диагонального сечения равна 12. Поскольку речь идет о правильной четырехугольной пирамиде, то пирамида имеет квадратное диагональное сечение. Поэтому площадь диагонального сечения равна площади квадрата со стороной d:

12 = d^2.

Теперь найдем периметр диагонального сечения. Поскольку речь идет о правильной четырехугольной пирамиде, то диагональное сечение является квадратом. Периметр квадрата равен 4 * a, где a - длина стороны квадрата.

Теперь найдем высоту пирамиды. Из условия задачи известно, что высота пирамиды равна 4.

Теперь мы можем найти длину стороны квадрата, используя формулу объема пирамиды:

V = (1/3) * S * h,

где V - объем пирамиды, S - площадь основания пирамиды, h - высота пирамиды.

Из условия задачи известно, что высота пирамиды равна 4. Также известно, что площадь основания пирамиды равна площади диагонального сечения, то есть 12. Подставляя известные значения в формулу для объема пирамиды, получаем:

V = (1/3) * 12 * 4 = 16.

Теперь можем найти длину стороны квадрата, используя формулу для объема пирамиды. Поскольку пирамида является правильной, то все стороны квадрата равны.

V = a^2 * h,

16 = a^2 * 4.

Решая это уравнение, получаем:

a^2 = 16 / 4 = 4,

a = √4 = 2.

Таким образом, сторона квадрата равна 2.

Теперь можем найти периметр диагонального сечения:

p = 4 * a = 4 * 2 = 8.

Теперь можем найти длину диагонали диагонального сечения, используя формулу площади диагонального сечения:

12 = (1/2) * 8 * d.

Решая это уравнение, получаем:

d = 12 / (1/2 * 8) = 12 / 4 = 3.

Теперь, когда у нас есть длина диагонали диагонального сечения, мы можем найти значение косинуса угла φ, используя формулу:

cosφ = высота пирамиды / длина диагонали диагонального сечения.

В нашем случае, высота пирамиды равна 4, а длина диагонали диагонального сечения равна 3.

cosφ = 4 / 3.

Таким образом, значение выражения 41cosφ равно:

41 * (4 / 3) = 164 / 3.

Таков ответ на задачу.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос