Вопрос задан 08.05.2019 в 01:02. Предмет Геометрия. Спрашивает Арбуз Карина.

Помогите, пожалуйста! Основание прямого параллелепипеда ромб с периметром 40 см. Одна из диагоналей

ромба равна 12 см. Найдите объем параллелепипеда, если его большая диагональ равна 20 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гундар Полина.
 В ромбе  стороны по 10 см. Найдем вторую диагональ, используя теорему Пифагора. 10²= 6²+х². х = 8 - половина второй диагонали, значит диагональ 16 см. Эта большая диагональ ромба с большей диагональю параллелепипеда и боковым ребром образуют прямоугольный треугольник.
Найдем ребро. 16²+h² = 20².  h =12 - это ребро или высота.
S(ромба) = 1/2 * 12 *16 =96 см².( половина произведения диагоналей)
V = 96 * 12 =1152 cм³.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Base of the Parallelepiped

To find the base of the parallelepiped, we need to determine the side length of the rhombus. We are given that the perimeter of the rhombus is 40 cm and one of its diagonals is 12 cm.

Let's denote the side length of the rhombus as s. Since the perimeter of the rhombus is 40 cm, we can write the equation:

4s = 40

Simplifying the equation, we find that s = 10 cm.

Now, let's find the area of the rhombus using the formula:

Area = (d1 * d2) / 2

where d1 and d2 are the lengths of the diagonals of the rhombus. We are given that one of the diagonals is 12 cm. Let's denote the other diagonal as d.

Using the given information, we can write the equation:

(12 * d) / 2 = Area

Simplifying the equation, we find that d = 4 cm.

Therefore, the base of the parallelepiped is a rhombus with side length 10 cm and one diagonal length 12 cm.

Finding the Volume of the Parallelepiped

To find the volume of the parallelepiped, we need to determine its dimensions. We are given that the larger diagonal of the parallelepiped is 20 cm.

Let's denote the length, width, and height of the parallelepiped as l, w, and h respectively.

Using the given information, we can write the following equations:

l^2 + w^2 = 12^2 (from the diagonal of the rhombus) l^2 + h^2 = 20^2 (from the larger diagonal of the parallelepiped)

Simplifying the equations, we find that:

l^2 + w^2 = 144 l^2 + h^2 = 400

Subtracting the first equation from the second equation, we get:

h^2 - w^2 = 400 - 144 h^2 - w^2 = 256

Factoring the equation, we have:

(h + w)(h - w) = 256

Since the parallelepiped is a rectangular shape, the lengths and widths are positive values. Therefore, we can conclude that h + w = 16 and h - w = 16.

Solving the system of equations, we find that h = 16 cm and w = 0 cm.

Since the width is 0 cm, the parallelepiped is actually a rectangular prism.

Therefore, the volume of the parallelepiped is given by the formula:

Volume = length * width * height = l * 0 * h = 0

Hence, the volume of the parallelepiped is 0 cubic centimeters.

Note: The given information may not be consistent, as the width of the parallelepiped is 0 cm. Please double-check the values provided to ensure accuracy.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос