
Вопрос задан 07.05.2019 в 06:47.
Предмет Геометрия.
Спрашивает Бутим Саша.
В прямоугольном треугольнике АВС угол С-прямой, точка О- центр вписанной окружности ,ОВ=12, угол
ВОС=105гр. Найдите радиус вписанной окружности..

Ответы на вопрос

Отвечает Коломойская Даша.
Центр вписанной окружности лежит в пункте пересечения биссектрис треугольника. Значит угол ОСВ равен углу ОСА, уголОСВ = 1/2*уголС =45градусов. Рассмотрим треугольник ВСО: сумма всех углов равна 180гр , значит угол ОВС = 180гр - 45гр - 105гр=30гр. Следовательно угол АВО равен 30гр(ОВ - биссектриса). Проведем ОК перпендикулярно АВ, ОК - радиус вписанной окружности. Рассмотрим треугольник ВОК: уголКОВ=30гр, ОВ=12. Синус - отношение противолежащего катета к гипотенузе (ОК-противолежащий катет, ОВ- гипотенуза). Синус углаКОВ = ОК/ВО. Синус 30гр = 1/2 => 1/2=ОК/ОВ => 1/2=ОК/12 . Отсюда следует, что ОК= 12/2 = 6. Ответ: 6



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения задачи воспользуемся свойством вписанной окружности в прямоугольном треуголь


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili