
В ромб вписана окружность. Может ли радиус этой окружности быть вычислен по формуле r=S/p, или эта
формула только для треугольника? Если нет, то как его можно вычислить?

Ответы на вопрос

Пусть в многоугольник с числом сторон N вписана окружность. Конечно, это не любой многоугольник. Но единственное его особое свойство - существует точка, равноудаленная от всех его сторон.
Центр вписанной окружности соединяем с вершинами многоугольника. Теперь многоугольник разрезан на несколько (по числу сторон, для 80-угольника - на 80) треугольников с общей вершиной в центре окружности. В каждом из треугольников высота, проведенная из этой общей вершины - это радиус вписанной окружности r, проведенный в точку касания окружности и стороны. Поэтому площадь треугольника, содержащего сторону многоугольника номер n (обозначим её a(n), n принимает значения от 1 до N, это просто номер стороны :))), равна a(n)*r/2; Складываем площади всех таких треугольников, очевидно получаем для площади многоугольника
S = (a(1) + a(2) + ...... + a(N))*r/2 = P*r/2; где Р = a(1) + a(2) + ...... + a(N); - периметр N-угольника.
Поэтому, единственное ограничение на применение формулы S = (a(1) + a(2) + ...... + a(N))*r/2 = P*r/2; состоит в том, что в N-угольник можно вписать окружность.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili