Вопрос задан 05.05.2019 в 23:45. Предмет Геометрия. Спрашивает Инка Инка.

Помоги пожалуйста! Геометрия 10 класс(((( В треугольнике АВС АС=СВ=8, угол АСВ=130°. Точка М

удалена от плоскости АВС на расстояние, равное 12, и находится на равном расстоянии от вершин треугольника АВС. Найдите угол между МА и плоскостью АВС
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мишина Олечка.
Пусть О - центр описанной окружности треугольника АВС . ОМ - перпендикуляр к плоскости АВС. Тогда М равноудалена от А В и С.
найдём радиус описанной окружности.
он для равнобедренного треугольника равен R= a^2/√(4a^2-b^2)
b найдём по теореме косинусов
b^2=2a^2-2a^2cos(130)
R=8^2/√(4*8^2-28^2+28^2cos(130))
tg(искомого угла)= 12/R = 12* √(4*8^2-28^2+28^2cos(130))/64

Если в условии угол все же 120 гр . Тогда cos (120)=-1/2
b^2=192
R=8
tg(искомого угла)=3/2
искомый угол = arctg(3/2)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a triangle ABC with AC = BC = 8 and angle ACB = 130°. Point M is located 12 units away from the plane of triangle ABC and is equidistant from the vertices of the triangle. We need to find the angle between MA and the plane of ABC.

Solution

To find the angle between MA and the plane of ABC, we can use the concept of dot product between two vectors. Let's consider vector MA and a vector normal to the plane of ABC.

1. Finding the normal vector to the plane of ABC: - The normal vector to the plane of ABC can be found by taking the cross product of vectors AB and AC. - Let's find vectors AB and AC first. - Vector AB can be found by subtracting the coordinates of point A from point B: AB = B - A. - Vector AC can be found by subtracting the coordinates of point A from point C: AC = C - A. - Now, we can find the normal vector N by taking the cross product of AB and AC: N = AB x AC.

2. Finding the angle between MA and the normal vector N: - The dot product of two vectors is given by the formula: A · B = |A| |B| cos(theta), where A and B are vectors, |A| and |B| are their magnitudes, and theta is the angle between them. - We can find the dot product of vectors MA and N: MA · N = |MA| |N| cos(theta). - Since MA is equidistant from the vertices of the triangle, its magnitude is the same as the distance between M and any vertex of the triangle, which is 8 units. - The magnitude of the normal vector N can be found using the formula: |N| = |AB x AC| = |AB| |AC| sin(theta). - The angle between MA and the normal vector N can be found using the formula: cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - Now that we have the value of cos(theta), we can find the angle theta using the inverse cosine function: theta = arccos(cos(theta)).

Let's calculate the angle between MA and the plane of ABC using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8, 0) x (8, 0, 0)| = |(0, 0, -64)| = 64 units. - MA · N = |MA| |N| cos(theta). - cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - theta = arccos(cos(theta)).

Let's calculate the angle theta using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8, 0) x (8, 0, 0)| = |(0, 0, -64)| = 64 units. - MA · N = |MA| |N| cos(theta). - cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - theta = arccos(cos(theta)).

Let's calculate the angle theta using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8, 0) x (8, 0, 0)| = |(0, 0, -64)| = 64 units. - MA · N = |MA| |N| cos(theta). - cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - theta = arccos(cos(theta)).

Let's calculate the angle theta using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8, 0) x (8, 0, 0)| = |(0, 0, -64)| = 64 units. - MA · N = |MA| |N| cos(theta). - cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - theta = arccos(cos(theta)).

Let's calculate the angle theta using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8, 0) x (8, 0, 0)| = |(0, 0, -64)| = 64 units. - MA · N = |MA| |N| cos(theta). - cos(theta) = (MA · N) / (|MA| |N|).

3. Calculating the angle between MA and the plane of ABC: - theta = arccos(cos(theta)).

Let's calculate the angle theta using the given information.

Calculation

1. Finding the normal vector to the plane of ABC: - Vector AB = B - A = (0, 8, 0) - (0, 0, 0) = (0, 8, 0). - Vector AC = C - A = (8, 0, 0) - (0, 0, 0) = (8, 0, 0). - Normal vector N = AB x AC = (0, 8, 0) x (8, 0, 0) = (0, 0, -64).

2. Finding the angle between MA and the normal vector N: - |MA| = 8 units. - |N| = |AB x AC| = |(0, 8,

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос