
Упрямы a, b и c не лежат в одной плоскости, но пересекаются в одной точке. сколько различных
плоскостей можно провести через эти прямые, беря их попарно? ответ обоснуйте

Ответы на вопрос




Чтобы ответить на этот вопрос, нужно понять, какие условия определяют плоскость, проходящую через две прямые.
Для начала рассмотрим случай, когда две прямые пересекаются в одной точке. В этом случае через эти две прямые можно провести только одну плоскость. Это связано с тем, что две неколлинеарные прямые определяют плоскость.
Теперь рассмотрим случай, когда три прямые пересекаются в одной точке. Мы можем провести плоскость через любые две из этих прямых. Таким образом, через эти прямые можно провести три различных плоскости.
Итак, если три прямые пересекаются в одной точке, то можно провести три различные плоскости, беря их попарно.
Если же прямые не пересекаются в одной точке, то через них нельзя провести плоскость, так как они не определяют плоскость.
Таким образом, ответ на данный вопрос зависит от того, сколько прямых пересекаются в одной точке. Если это три прямые, то можно провести три различные плоскости. Если же прямые пересекаются в разных точках или не пересекаются вовсе, то нельзя провести ни одной плоскости.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili