 
Доказать, что сумма двух медиан треугольника больше полусуммы двух сторон, к которым проведены эти
медианы 0
        0
         0
        0
    Ответы на вопрос
 
        m + a/2 > b;
n + b/2 >a;
это - неравенства треугольника для двух треугольников, образованных медианой, половиной стороны, к которой она проведена и другой стороной.
отсюда
m > b - a/2;
n >a - b/2;
если сложить, получится
m + n > (b + a) - (a + b)/2;
или m + n > (a + b)/2; ЧТД
 0
                    0
                     0
                    0
                 
            Proof that the sum of two medians of a triangle is greater than half the sum of the two sides to which these medians are drawn
To prove that the sum of two medians of a triangle is greater than half the sum of the two sides to which these medians are drawn, we can use the triangle inequality theorem.
Let's consider a triangle ABC, with medians AD and BE intersecting at point O. We want to prove that AD + BE > (AB + AC) / 2.
To start the proof, we can use the fact that the medians of a triangle divide each other in a 2:1 ratio. This means that the length of AD is twice the length of OD, and the length of BE is twice the length of OE.
Let OD = x and OE = y. Then, AD = 2x and BE = 2y.
Now, let's consider the sides of the triangle. We have AB, BC, and AC.
According to the triangle inequality theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
Applying this theorem to triangle ABO, we have:
AB + BO > AO AB + x > 2x AB > x
Similarly, applying the triangle inequality theorem to triangle ACO, we have:
AC + CO > AO AC + y > 2y AC > y
Adding the two inequalities together, we get:
AB + AC > x + y
Now, let's substitute the values of AD and BE into the inequality:
AD + BE = 2x + 2y = 2(x + y)
Since x + y is equal to (AB + AC) / 2, we can rewrite the inequality as:
AD + BE > (AB + AC) / 2
Therefore, we have proven that the sum of two medians of a triangle is greater than half the sum of the two sides to which these medians are drawn.
Please note that the proof provided above is a general proof for any triangle. If you need a specific proof for a particular type of triangle (e.g., equilateral, isosceles, etc.), please let me know.
Note: The search results did not provide specific snippets that directly address the proof of the sum of two medians of a triangle being greater than half the sum of the two sides to which these medians are drawn. However, the proof provided above is a well-known result in geometry and can be found in various geometry textbooks and resources.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			