Вопрос задан 27.04.2019 в 10:01. Предмет Геометрия. Спрашивает Амандык Мейржан.

ПОМОГИТЕ ПОЖАЛУЙСТА Через точку О, лежащую между параллельными плоскостями альфа и бета, проведены

прямые l и m. Прямая l пересекает плоскости альфа и бета в точках А1 и А2 соответственно, прямая M - в точках b1 и b2. Найти длину отрезка А2B2 , если A1B1=12 см, B1О/ОB2=3/4 С РИСУНКОМ. ---------------------
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котов Дмитрий.
Точки А1,В1 принадлежат плоскости α,значит прямая А1В1 ∈α
Точки А2,В2 принадлежат плоскости β,значит прямая А2В2 ∈β
Плоскости параллельны,значит и прямые параллельны.
Следовательно ΔА1ОВ1∞ΔА2ОВ2 по 2 равным углам:<B1A1O=<B2A2O накрест лежащие и <A1OB1+<A2OB2 вертикальные
A1B1/A2B2=B1O/B2O
12/A2B2=3/4
A2B2=(12*4)/3=16см
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task: Finding the length of segment A2B2

To find the length of segment A2B2, we need to analyze the given information and use the provided diagram.

Given Information:

- There are two parallel planes, alpha (α) and beta (β). - Two lines, l and m, are drawn through a point O lying between the parallel planes alpha (α) and beta (β). - Line l intersects the planes alpha (α) and beta (β) at points A1 and A2, respectively. - Line m intersects the planes alpha (α) and beta (β) at points B1 and B2, respectively. - The length of segment A1B1 is given as 12 cm. - The ratio of segment B1O to segment OB2 is 3/4.

Solution Steps:

1. Analyze the diagram and identify the relevant geometric relationships. 2. Use the given information to set up equations or relationships. 3. Solve the equations to find the length of segment A2B2.

Analysis:

From the given information, we can observe the following relationships: - Segment A1B1 has a length of 12 cm. - The ratio of segment B1O to segment OB2 is 3/4.

Solution:

Let's denote the length of segment A2B2 as x.

Using the given information, we can set up the following equations:

Equation 1: A1B1 = 12 cmEquation 2: B1O/OB2 = 3/4

To find the length of segment A2B2, we need to find the value of x.

Solving the Equations:

From Equation 2, we can rewrite it as B1O = (3/4) * OB2.

Since segment A1B1 is parallel to segment A2B2, we can conclude that segment A1A2 is also parallel to segment B1B2.

Using this information, we can apply the Intercept Theorem, which states that if two parallel lines are intersected by a transversal, then the corresponding segments are proportional.

According to the Intercept Theorem, we have the following relationship:

A1B1/A2B2 = B1O/OB2

Substituting the given values, we have:

12/x = (3/4)

To solve for x, we can cross-multiply:

12 * 4 = 3 * x

48 = 3x

Dividing both sides by 3, we get:

x = 16 cm

Therefore, the length of segment A2B2 is 16 cm.

Conclusion:

The length of segment A2B2 is 16 cm, based on the given information and analysis of the diagram.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос