
Вопрос задан 09.05.2018 в 22:20.
Предмет Геометрия.
Спрашивает Рысь Лиза.
Решите задание номер пять пожалуйста.



Ответы на вопрос

Отвечает Дяденко Яна.
Пусть точки касания вписанной окружности с гипотенузой АВ - точка М, а с катетом АС - точка N.
BM=X, AM=Y (как касательные из одной точки).
ВС=Х+5, АС=Y+5 (так как CDON - квадрат).
АВ=Х+Y. Y=37-Х.
АВ²=ВС²+АС²=(Х+5)²+(Y+5)². Отсюда
Х²-37Х+210=0.
Х1=(37+√529)/2=(37+23)/2=30. Y1=7.
Х2=(37-23)/2=7, Y2=30.
Sabc=(1/2)*ВC*AC=(1/2)*BC*AC.
Sabc=(1/2)*35*12=210.
Более короткий путь: Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно р=с, где р - полупериметр, а с - сторона, противолежащая вершине С (свойство). Тогда 5=р-37, отсюда р=42.
Тогда по формуле S=р*r = 42*5=210.



Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili