Вопрос задан 03.04.2019 в 08:04. Предмет Геометрия. Спрашивает Богомолова Катя.

Срочно!!!!В окружность радиуса R вписан равнобедренный треугольник, у которого сумма длин основания

и высоты равна диаметру окружности.Найти высоту треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вирозёров Саша.

Пусть b - основание тр-ка, а - боковая сторона, h - высота к основанию.

Тогда по условию: 2R = b+h.        (1)

Теперь воспользуемся двумя формулами для площади тр-ка:

S = abc/(4R)   и    S = bh/2

Получим уравнение:

h = a^2 /(2R)                                (2)

И наконец теорема Пифагора:

a^2 = b^2 /4  + h^2                       (3)

(1), (2), (3) - система трех уравнений с тремя неизвестными: a, b, h.

Разрешим ее относительно h:

((2R-h)^2)/4  + h^2 = 2Rh

5h^2 - 12Rh + 4R^2 = 0      D = 64R^2

h1 = (12R + 8R)/10 = 2R  -  не подходит по смыслу.

h2 = (12R - 8R)/10 = 0,4R

Ответ: 0,4R. 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос