
Вопрос задан 01.04.2019 в 21:57.
Предмет Геометрия.
Спрашивает Мырзабек Бота.
Через т. косинусов и синусов. Окружность, вписанная в треугольник АВС, касается стороны АВ в т.М,
при этом АМ=1, ВМ=4. Найдите СМ, если известно, что угол ВАС=120

Ответы на вопрос

Отвечает Седой Макс.
Отрезки касательных, проведенных из одной точки к окружности, равны...
и тогда по т.косинусов можно записать:
(4+x)² = 5² + (x+1)² - 2*5*(x+1)*cos(120·)
16 + 8x + x² = 25 + x² + 2x + 1 + 5x + 5
x = 15 --это равные расстояния от вершины С треугольника до точек касания окружности со сторонами CВ и СА,
следовательно, СА = 15+1 = 16, СВ = 15+4 = 19
и вновь по т.косинусов из треугольника СМА
СМ² = 1² + 16² - 2*1*16*cos(120·)
CM² = 1+256+16 = 273
CM = √273
и тогда по т.косинусов можно записать:
(4+x)² = 5² + (x+1)² - 2*5*(x+1)*cos(120·)
16 + 8x + x² = 25 + x² + 2x + 1 + 5x + 5
x = 15 --это равные расстояния от вершины С треугольника до точек касания окружности со сторонами CВ и СА,
следовательно, СА = 15+1 = 16, СВ = 15+4 = 19
и вновь по т.косинусов из треугольника СМА
СМ² = 1² + 16² - 2*1*16*cos(120·)
CM² = 1+256+16 = 273
CM = √273


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili