
Вопрос задан 30.03.2019 в 12:02.
Предмет Геометрия.
Спрашивает Акатаева Айым.
C точки к прямой проведено две наклонные проекции которых равны 3 см и 7 см. Найдите расстояние от
точки до прямой, если сумма наклонных равна 28 см.

Ответы на вопрос

Отвечает Щербинин Дмитрий.
Удивительно, если решать эту задачу "в лоб", она очень неприятная (хотя конечно не сложная). Сразу можно написать уравнение
√(3^2 + h^2) + √(7^2 + h^2) = 28; и решать его...
А вот если мне не охота его решать? Если мне просто противно ковыряться в знаках при возведении в квадрат? Да, как ни странно, задачу эту можно решить на много понятнее и проще, выполняя совсем простенькие вычисления. Пусть длины наклонных x и y.
Вот если я поищу их, а не это расстояние h...
Ясно, что
x^2 - h^2 = 3^2;
y^2 - h^2 = 7^2;
следовательно
y^2 - x^2 = 7^2 - 3^2 = 40;
или
(y + x)*(y - x) = 40; => 28*(y - x) = 40; => y - x = 10/7; (ну как заказывали...)
то есть y = 14 + 5/7; x = 14 - 5/7; (такие системы решают в начальных классах)
ну, и подстановка h = √(y^2 - 7^2); дает ответ
h = (12/7)*√57;
к сожалению, этот ответ верен, я проверил численно :) ну, знаете, иногда трудно поверить, что условие составляли так небрежно, что в ответе получаются какие-то непонятные корни.
Приближенно h = 12,942573317607.
Здесь важно, что каждый шаг в решении - это очень простое действие, которое легко проверить. Тот самый случай, когда прямой путь намного длиннее окольного.
√(3^2 + h^2) + √(7^2 + h^2) = 28; и решать его...
А вот если мне не охота его решать? Если мне просто противно ковыряться в знаках при возведении в квадрат? Да, как ни странно, задачу эту можно решить на много понятнее и проще, выполняя совсем простенькие вычисления. Пусть длины наклонных x и y.
Вот если я поищу их, а не это расстояние h...
Ясно, что
x^2 - h^2 = 3^2;
y^2 - h^2 = 7^2;
следовательно
y^2 - x^2 = 7^2 - 3^2 = 40;
или
(y + x)*(y - x) = 40; => 28*(y - x) = 40; => y - x = 10/7; (ну как заказывали...)
то есть y = 14 + 5/7; x = 14 - 5/7; (такие системы решают в начальных классах)
ну, и подстановка h = √(y^2 - 7^2); дает ответ
h = (12/7)*√57;
к сожалению, этот ответ верен, я проверил численно :) ну, знаете, иногда трудно поверить, что условие составляли так небрежно, что в ответе получаются какие-то непонятные корни.
Приближенно h = 12,942573317607.
Здесь важно, что каждый шаг в решении - это очень простое действие, которое легко проверить. Тот самый случай, когда прямой путь намного длиннее окольного.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili