Вопрос задан 06.05.2018 в 07:46. Предмет Геометрия. Спрашивает Шалимова Машуля.

В окружность вписан квадрат со стороной равной 8 см. найдите длину дуги окружности стягиваемой

стороной квадрата
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Римская Евгения.

Центр окружности, описанной около квадрата, лежит в точке пересечения его диагоналей, а радиус равен половине диагонали.
Найдем диагональ по теореме Пифагора из прямоугольного треугольника, образованного двумя смежными сторонами квадрата и диагональю:
d = √(8² + 8²) = √(2 · 8²) = 8√2 см
R = d/2 = 4√2 см

Диагонали квадрата перпендикулярны, поэтому величина центрального угла, соответствующего искомой дуге, равна 90°.
Длина дуги:
l = πR · α / 180°
l = π · 4√2 · 90° / 180° = 2√2π см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос