Вопрос задан 24.03.2019 в 08:57. Предмет Геометрия. Спрашивает Горбунова София.

Каждое ребро правильной четырехугольной пирамиды равно 6. найдите площадь сечения, проведенного

через диагональ основания, перпендикулярно боковому ребру.(Рисунка нет, потому не выложу)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куангалиева Раушан.

Пирамида SABCD, S - вершина, диагональ BD, на ребре SC точка F, плоскость FBD перпендикулярна SC, точка О - центр квадрата в основании пирамиды (само собой, он делит BD пополам). Все боковые грани, в том числе SDC и SBC - равносторонние треугольники. Это все задано в условии. 

Сечение BFD - равнобедренный треугольник с основанием BD и высотой SO, боковые стороны BF и FD перпендикулярны SC (плоскость FBD перпендикулярна SC), поэтому в треугольнике SDC - DF высота (медиана, биссектриса). То есть F - середина SC.

Тут можно было бы заняться вычислениями, но можно заметить, что в прямоугольном треугольнике SOC - OF медиана к гипотенузе, то есть равна её половине, то есть 3. Это позволяет сразу записать ответ.

SBFD = FO*BD/2 = 3*(6*корень(2))/2 = 9*корень(2) 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос