Вопрос задан 05.05.2018 в 03:48. Предмет Геометрия. Спрашивает Савин Сергей.

Конус вписан в правильную четырехугольную пирамиду , у которой высота равна 6√3 см, сторона

основания 12 см. Найдите площадь боковой поверхности конуса.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зайцева Надя.

Высота конуса равна высоте пирамиды. Пирамида правильная, значит в основании лежит квадрат. радиус вписанной в квадрат окружность равен половине стороны, т.е. 3sqrt{3} по теореме Пифагора на ходим образующую конуса: l^2=144+27=169. Образующая равна 13, далее по формуле /pi*r*l = 3корняиз3* 13*пи = 39корнейиз3*пи

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос