
Окружность с центром о, вписанная прямоугольный треугольник авс касается катета вс в точке м. луч
во пересекает катет ас в точке к. найдите ак,если см= 4, вм = 8

Ответы на вопрос

Центр О вписанной окружности равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
Проведем радиусы в точки касания вписанной окружности с катетами. Они перпендикулярны касательным (катетам) в точках касания М и Р. Проведем биссектрису ВК угла В, которая проходит через центр вписанной окружности О. СРОМ - квадрат. ОР=ОМ=СМ=4.Тогда из подобия треугольников ОМВ и КРО имеем: ВМ/ОР=ОМ/КР или 8/4=4/КР, откуда КР=16/8=2. Тогда КС=КР+РС=2+4=6. Тангенс угла КВС равен отношению противолежащего катета к прилежащему, то есть КС/СВ=6/12=1/2. В тригонометрии есть формула: Tg2α=2tgα/(1-tg²α). В нашем случае tg2α=1/(3/4)=4/3. Угол В треугольника равен 2α, так как ВК - биссектриса. В треугольнике АВС tgB = AC/СВ, отсюда АС=СВ*tgα = 12*(4/3)=16.
Тогда АК=АС-КС=16-6=10.
Ответ: АК=10.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili