Вопрос задан 14.03.2019 в 09:11. Предмет Геометрия. Спрашивает Еждик Галя.

Найти площадь фигуры, ограниченной линиями y=9-x^2, y=0.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Плышевская Александра.

Найдем точки пересечения графика функции у=9-x^2 с осью ОХ, 9-х²=0, х=±3. Так как это парабола и она симметрична относительно начала координат, то достаточна найти интеграл (9-x^2) пределы интегрирования от 0 до 3, и полученный ответ умножить на 2. ₀³∫(9-х²)dх=9х-х³/3, подставим пределы интегрирования, сначала 3 потом 0, получим (9*3-3³/3)-(9*0-0³/3)=3. Тогда площадь фигуры равна 3*2=6 кв.ед.

НАВЕРНО ТАК

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос