
Вопрос задан 14.03.2019 в 09:11.
Предмет Геометрия.
Спрашивает Еждик Галя.
Найти площадь фигуры, ограниченной линиями y=9-x^2, y=0.


Ответы на вопрос

Отвечает Плышевская Александра.
Найдем точки пересечения графика функции у=9-x^2 с осью ОХ, 9-х²=0, х=±3. Так как это парабола и она симметрична относительно начала координат, то достаточна найти интеграл (9-x^2) пределы интегрирования от 0 до 3, и полученный ответ умножить на 2. ₀³∫(9-х²)dх=9х-х³/3, подставим пределы интегрирования, сначала 3 потом 0, получим (9*3-3³/3)-(9*0-0³/3)=3. Тогда площадь фигуры равна 3*2=6 кв.ед.
НАВЕРНО ТАК


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili