
В параллелограмме ABCD косинус B равен минус корень из 11 деленное на 6 высота опущенная на сторону
AD D равно 5 Найдите CD

Ответы на вопрос




Finding CD in a Parallelogram
To find the length of CD in parallelogram ABCD, we need to use the given information about the cosine of angle B and the height dropped onto side AD.
Let's break down the problem step by step:
1. Given information: - Cosine of angle B: cos(B) = -√11/6. - Height dropped onto side AD: h = 5.
2. Understanding the problem: - We have a parallelogram ABCD, where AB is parallel to CD and AD is parallel to BC. - We are given the cosine of angle B and the height dropped onto side AD. - We need to find the length of CD.
3. Solution: - In a parallelogram, the opposite sides are equal in length. Therefore, AB = CD. - We can use the cosine rule to find the length of AB (or CD) using the given information. - The cosine rule states that for a triangle with sides a, b, and c, and angle A opposite side a, the following equation holds: a^2 = b^2 + c^2 - 2bc * cos(A). - In our case, we can consider triangle ABD, where AB = c, AD = b, and angle B = A. - Using the cosine rule, we can write the equation as: AB^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B). - Since AB = CD, we can rewrite the equation as: CD^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B). - We are given AD = 5 and cos(B) = -√11/6. - We need to find BD to calculate CD.
4. Finding BD: - To find BD, we can use the Pythagorean theorem in triangle ABD. - The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. - In our case, triangle ABD is a right-angled triangle with AB as the hypotenuse, AD as one side, and BD as the other side. - Using the Pythagorean theorem, we can write the equation as: AB^2 = AD^2 + BD^2. - Since AB = CD and AD = 5, we can rewrite the equation as: CD^2 = 5^2 + BD^2. - Solving for BD, we get: BD^2 = CD^2 - 25.
5. Substituting values and solving for CD: - We know that cos(B) = -√11/6 and BD^2 = CD^2 - 25. - Substituting these values into the equation CD^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B), we get: CD^2 = 5^2 + (CD^2 - 25) - 2 * 5 * BD * (-√11/6). - Simplifying the equation, we get: CD^2 = 25 + CD^2 - 25 + 5 * BD * √11/3. - Cancelling out the CD^2 terms, we get: 0 = 5 * BD * √11/3. - Dividing both sides by 5 * √11/3, we get: BD = 0. - Since BD = 0, we can conclude that CD = AB = 0.
Therefore, the length of CD in parallelogram ABCD is 0.
Please let me know if you need any further clarification or assistance!


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili