 
В параллелограмме ABCD косинус B равен минус корень из 11 деленное на 6 высота опущенная на сторону
AD D равно 5 Найдите CD 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Finding CD in a Parallelogram
To find the length of CD in parallelogram ABCD, we need to use the given information about the cosine of angle B and the height dropped onto side AD.
Let's break down the problem step by step:
1. Given information: - Cosine of angle B: cos(B) = -√11/6. - Height dropped onto side AD: h = 5.
2. Understanding the problem: - We have a parallelogram ABCD, where AB is parallel to CD and AD is parallel to BC. - We are given the cosine of angle B and the height dropped onto side AD. - We need to find the length of CD.
3. Solution: - In a parallelogram, the opposite sides are equal in length. Therefore, AB = CD. - We can use the cosine rule to find the length of AB (or CD) using the given information. - The cosine rule states that for a triangle with sides a, b, and c, and angle A opposite side a, the following equation holds: a^2 = b^2 + c^2 - 2bc * cos(A). - In our case, we can consider triangle ABD, where AB = c, AD = b, and angle B = A. - Using the cosine rule, we can write the equation as: AB^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B). - Since AB = CD, we can rewrite the equation as: CD^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B). - We are given AD = 5 and cos(B) = -√11/6. - We need to find BD to calculate CD.
4. Finding BD: - To find BD, we can use the Pythagorean theorem in triangle ABD. - The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. - In our case, triangle ABD is a right-angled triangle with AB as the hypotenuse, AD as one side, and BD as the other side. - Using the Pythagorean theorem, we can write the equation as: AB^2 = AD^2 + BD^2. - Since AB = CD and AD = 5, we can rewrite the equation as: CD^2 = 5^2 + BD^2. - Solving for BD, we get: BD^2 = CD^2 - 25.
5. Substituting values and solving for CD: - We know that cos(B) = -√11/6 and BD^2 = CD^2 - 25. - Substituting these values into the equation CD^2 = AD^2 + BD^2 - 2 * AD * BD * cos(B), we get: CD^2 = 5^2 + (CD^2 - 25) - 2 * 5 * BD * (-√11/6). - Simplifying the equation, we get: CD^2 = 25 + CD^2 - 25 + 5 * BD * √11/3. - Cancelling out the CD^2 terms, we get: 0 = 5 * BD * √11/3. - Dividing both sides by 5 * √11/3, we get: BD = 0. - Since BD = 0, we can conclude that CD = AB = 0.
Therefore, the length of CD in parallelogram ABCD is 0.
Please let me know if you need any further clarification or assistance!
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			