Вопрос задан 18.02.2019 в 12:40. Предмет Геометрия. Спрашивает Бецгольд Миша.

Точка А(2;0) является вершиной квадрата, диагональ BD которого лежит на прямой L: 2x-3y+6=0.

Составить уравнение второй диагонали и сторон квадрата.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лермонтова Кристина.
Две прямые, заданные уравнениями y_1=k_1x+b_1 и y_2=k_2x+b_2 , будут перпендикулярны тогда и только тогда, когда k_1\cdot k_2=-1 . Коэффициенты k_1 и k_2 называются угловыми коэффициентами.
Мы имеем диагональ BD , которая лежит на прямой 2x-3y+6=0 . Приведём уравнение этой прямой в нужный нам вид:
2x-3y+6=0 \\ 3y=2x+6 \\ y= \dfrac{2}{3} x+2 .
Здесь угловой коэффициент равен k_1= \dfrac{2}{3}
Пусть диагональ AC лежит на прямой y_2=k_2x+b_2 .Тогда, т.к. диагонали в квадрате перпендикулярны,  \dfrac{2}{3} \cdot k_2=-1 , откуда k_2= -\dfrac{3}{2} . Т.е диагональ AC лежит на прямой y_2=- \dfrac{3}{2} x+b_2 . Но мы также знаем, что эта прямая проходит через точку A(2;0) . Исходя из этого составим уравнение:0=- \dfrac{3}{2} \cdot2+b_2 , откуда b_2=3 . Мы получили уравнение прямой, на которой лежит диагональ AC - это прямая y=- \dfrac{3}{2} x+3 или, что то же самое, 2y+3x-6=0 .



Теперь к уравнениям сторон.

Две прямые, заданные уравнениями y_1=k_1x+b_1 и y_2=k_2x+b_2 , пересекаются под углом  \alpha , тангенс которого равен \tan \alpha = \dfrac{k_2-k_1}{1+k_1\cdot k_2} . Причём при 1+k_1\cdot k_2=0 они перпендикулярны.
Угол между диагональю и смежной стороной в квадрате равен 45^\circ . Пусть сторона AB лежит на прямой y_3=k_3x+b_3. Получается, нам нужно, чтобы прямая AC при пересечении с прямой y_3=k_3x+b_3 образовывала угол в 45^\circ. (А сторона AC лежит на прямой y=- \dfrac{3}{2} x+3 .)
Исходя из всего этого, составим и решим уравнение:
\tan 45^\circ= \dfrac{-\frac{3}{2}-k_3 }{1-k_3\cdot \frac{3}{2} } \\ 1 = \dfrac{-\frac{3}{2}-k_3 }{1-k_3\cdot \frac{3}{2} } \\ -\dfrac{3}{2}-k_3 =1-k_3\cdot \dfrac{3}{2} \\ \dfrac{5}{2} k_3= \dfrac{1}{2} \\ k_3=5
Мы получили, что сторона AB лежит на прямой y_3=5x+b_3 . Но мы также знаем, что эта прямая проходит через точку A(2;0) . Получаем, что 0=5\cdot2+b_3 , откуда b_3=-10 . Значит, сторона AB лежит на прямой y=5x-10 .

Найдём координаты вершины B - это точка пересечения диагонали AB и стороны BD :
\dfrac{2}{3} x+2=5x-10 \\ 12= \dfrac{13}{3} x \\ x= \dfrac{36}{13} \\ y= \dfrac{2}{3}  \cdot \dfrac{36}{13} +2= \dfrac{50}{13}
Получили координаты вершины B(\dfrac{36}{13} ; \dfrac{50}{13}) .

Пусть прямая, на которой лежит сторона CB, имеет вид y_4=k_4x+b_4. Она перпендикулярна прямой, на которой лежит сторона BA . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона CB :
k_4\cdot5=-1 \\ k_4=- \dfrac{1}{5} \ ; \\ \dfrac{50}{13}= - \dfrac{1}{5}\cdot\dfrac{36}{13}+b_4 \\ b_4= \dfrac{2}{5}
Получили, что сторона CB лежит на прямой y=- \dfrac{1}{5} x+ \dfrac{22}{5} .

BC параллельна AD, отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона AD
0=- \dfrac{1}{5} \cdot2+b_5   \\  b_5= \dfrac{2}{5}
Получили уравнение ADy=- \dfrac{1}{5} x+ \dfrac{2}{5} .

Найдём координаты точки C :
- \dfrac{1}{5} x+ \dfrac{22}{5} =- \dfrac{3}{2} x+3 \\  \dfrac{13}{10} x= -\dfrac{7}{5}  \\ x= -\dfrac{14}{13}  \\ y=- \dfrac{3}{2} \cdot  (-\dfrac{14}{13}) +3= \dfrac{60}{13}.

CD параллельна AB, отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD:
\dfrac{60}{13}=5\cdot (-\dfrac{14}{13})+b_5 \\ b_5=10
Получили, что сторона CD лежит на прямой y=5x+10 .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение:

Для начала, найдем координаты точек B и D, а затем составим уравнение второй диагонали и сторон квадрата.

1. Нахождение координат точек B и D: Точка А(2;0) является вершиной квадрата, поэтому B и D будут лежать на прямой, проходящей через точку A и перпендикулярной прямой L. Найдем уравнение этой прямой. Уравнение прямой L: 2x - 3y + 6 = 0

Уравнение прямой, проходящей через точку A(2;0) и перпендикулярной L: 3x + 2y + C = 0, где C - это некоторая константа.

Подставим координаты точки A в это уравнение: 3*2 + 2*0 + C = 0 6 + C = 0 C = -6

Таким образом, уравнение прямой, проходящей через точку A(2;0) и перпендикулярной L, имеет вид: 3x + 2y - 6 = 0

Теперь найдем точки пересечения этой прямой с прямой L, которые будут точками B и D. Решим систему уравнений: 2x - 3y + 6 = 0 (прямая L) 3x + 2y - 6 = 0 (прямая, проходящая через A и перпендикулярная L)

Решение системы уравнений даст нам координаты точек B и D.

2. Нахождение уравнения второй диагонали и сторон квадрата: После того, как мы найдем координаты точек B и D, мы сможем найти середину отрезка BD, которая будет центром квадрата. Затем, используя координаты центра и вершины квадрата, мы сможем найти уравнения сторон квадрата и второй диагонали.

После того, как будут найдены координаты точек B и D, я смогу продолжить решение.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос