Вопрос задан 17.02.2019 в 06:58. Предмет Геометрия. Спрашивает Шумилов Алексей.

2+2 сколько? Я не знала как привлечь ваше внимание но помогите придумайте по две задачи про

бесиктрису и смежные углы. пожалуйста помогите мне.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Буйко Вадим.
На первый вопрос ответ прост - 4))))) 
Задачи:
1) Угол =24 градусам, найдите угол, образованный между его стороной и биссектрисой
2) Расстояние между стороной и биссектрисой = 60 градусам, найдите весь угол (его размер в градусах)
3)Один из смежных углов = 50 градусам, найдите второй
4) Один из смежных углов больше второго на 20 градусов, найдите данные углы
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

2 + 2 equals 4.

Now, let's move on to the two problems about bisectors and adjacent angles that you mentioned.

Problem 1: Bisectors

Problem: Given a triangle ABC, let AD be the angle bisector of angle A, and BE be the angle bisector of angle B. Prove that AD and BE are perpendicular.

Solution: To prove that AD and BE are perpendicular, we can use the fact that the angle bisector of an angle divides the opposite side into segments that are proportional to the adjacent sides.

Let's denote the lengths of the sides of triangle ABC as a, b, and c, where side AB has length c, side BC has length a, and side AC has length b.

According to the angle bisector theorem, we have:

AD/DB = AC/CB BE/EA = BC/CA

Since AD/DB = AC/CB and BE/EA = BC/CA, we can conclude that:

AD/DB = BE/EA

Now, let's consider the triangles ADB and BEA. By the SAS (Side-Angle-Side) congruence criterion, we can prove that these two triangles are similar.

Therefore, we have:

∠ADB = ∠BEA

Since the sum of the angles in a triangle is 180 degrees, we can write:

∠ADB + ∠BEA + ∠AEB = 180 degrees

Substituting ∠ADB with ∠BEA, we get:

∠BEA + ∠BEA + ∠AEB = 180 degrees

Simplifying, we have:

2∠BEA + ∠AEB = 180 degrees

Since ∠BEA and ∠AEB are adjacent angles, their sum is 180 degrees only if they are perpendicular. Therefore, we can conclude that AD and BE are perpendicular.

Problem 2: Adjacent Angles

Problem: In a parallelogram ABCD, prove that the adjacent angles are supplementary.

Solution: To prove that the adjacent angles in a parallelogram are supplementary, we can use the properties of parallel lines and transversals.

Let's consider the parallelogram ABCD. By definition, opposite sides of a parallelogram are parallel. Therefore, we can draw a transversal line that intersects two pairs of opposite sides.

Let's label the points where the transversal intersects the sides of the parallelogram as E, F, G, and H, as shown below:

``` A------B | | | | D------C ```

Now, let's consider the angles formed by the transversal and the parallel sides:

∠AED and ∠BFC are alternate interior angles. ∠BFC and ∠CGD are alternate interior angles. ∠CGD and ∠DHE are alternate interior angles. ∠DHE and ∠AEF are alternate interior angles.

Since alternate interior angles are congruent when the transversal intersects parallel lines, we can write:

∠AED = ∠BFC ∠BFC = ∠CGD ∠CGD = ∠DHE ∠DHE = ∠AEF

Now, let's consider the sum of the adjacent angles in the parallelogram:

∠AED + ∠BFC + ∠CGD + ∠DHE = 360 degrees

Substituting the congruent angles, we get:

∠AED + ∠AED + ∠AED + ∠AED = 360 degrees

Simplifying, we have:

4∠AED = 360 degrees

Dividing both sides by 4, we get:

∠AED = 90 degrees

Therefore, we can conclude that the adjacent angles in a parallelogram are supplementary, as they add up to 180 degrees.

I hope these solutions help you with your problems! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос