Вопрос задан 27.04.2018 в 03:58. Предмет Геометрия. Спрашивает Бровченко Наталья.

В равнобедренном треугольнике АВС с основанием АВ, медианы АN и ВМ пересекаються в точке О. Найдите

эти медианы если : Угол МОА = 60 градусов , АВ = 12 см. Помогите пожалуйста.. Заранее очень благодарен..!! Спасибо!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Калева Алина.

Смотри:Так как треугольник ABC-равнобедренный,то AC=CB,и так как медианы делят стороны AC и CB   пополам(свойства медиан)=>AM=MC=NB=CN.

Так как угол MOA=60градусов ,а угол NOB=180градусов(NB-прямая)=>угол AOB=180-60=120 градусов.Пусть AO=OB-x, тогда по теореме косинусов

AB^2=x^2+x^2-2*x*x*cosAOB

144=2*x^2-2*x^2*(-0,5)

144=3*x^2=>x^2=144/3=>x=4 корня из 3.

Так как A0/ON=2/1(cвойства медиан)=>ON=AO/2

AO=x

ON=x/2=2 корня из 3

AN=AO+ON=6 корней из 3

Также эти медианы равны AN=BN=6 корней из 3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос