
Вопрос задан 05.02.2019 в 11:40.
Предмет Геометрия.
Спрашивает Кабылов Женя.
В трапеции ABCD (AD||BC) диагонали AC и BD пересекаются в точке P. а) Докажите, что треугольники
APD и CPB подобны. б) Найдите площадь треугольника CPB, если известно, что AP:PC=3:2, а площадь треугольника APD равна 117

Ответы на вопрос

Отвечает Мартынова Дарья.
А) угол BCA = углу САД, угол СВД = углу ВДА (как накрест лежащие при пересечении параллельных прямых секущей) ⇒ треугольники APD и CPB подобны
б)так как APD и CPB подобны, то можем узнать их коэффициент подобия. Он равен 3:2=1,5. Также отношение площадей подобных треугольников равно квадрату коэффициента подобия, значит 117/x=1.5² (где х - площадь СРВ). Получаем что площадь СРВ = 117:2,25=52
б)так как APD и CPB подобны, то можем узнать их коэффициент подобия. Он равен 3:2=1,5. Также отношение площадей подобных треугольников равно квадрату коэффициента подобия, значит 117/x=1.5² (где х - площадь СРВ). Получаем что площадь СРВ = 117:2,25=52


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili