Вопрос задан 20.01.2019 в 09:39. Предмет Геометрия. Спрашивает Всеволодов Никодим.

Точка M не лежит в плоскости параллелограмма ABCD. На отрезке AM выбрана точка E так, что ME:EA=2:3

а) Постройте точку F - точку пересечения прямой MB с плоскостью CDE б) Найдите АВ, если EF=10см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рахиль Алина.
Пункты 1) и 2) относятся к варианту, когда отрезок АМ вертикален, тогда плоскость МАВ тоже вертикальна.
1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка  F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.

2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ).
Отрезок FF1 равен ЕА.
Поэтому F1B = (3/2)*10 = 15 см.
АF1 = ЕF = 10 см.
Отсюда АВ = 10+15 = 25 см.

Примечание: данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос