
Вопрос задан 23.04.2018 в 15:10.
Предмет Геометрия.
Спрашивает Солодуха Егор.
Точки E и F лежат соответственно н сторонах AD и BC параллелограмма ABCD AB=ED, BF:FC=4:3 .
Выразить вектор EF через вектор m=AB и n=AD

Ответы на вопрос

Отвечает Стратилатов Евгений.
Решение:
Отобразим на чертеже точку G – середину стороны BC. Соединим точки E (середина AD по условию) и точку G (середину BC). Получим вектор (т. к. они коллинеарны, поскольку и ). По условию задачи известно, что BF:CF=4:3. Обозначим сторону BC за 7x, тогда BG=3,5x (т. к. G– середина BC), BF=4x, следовательно GF=0,5x=BC/14=AD/14. Проведем вектор . Вектор .


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili