Вопрос задан 19.01.2019 в 10:40. Предмет Геометрия. Спрашивает Ковальчук Дмитрий.

При каком значении b сумма квадратов корней уравнения x^2+(b+1)*x+b^2=1,5 наибольшая? Объясните

пожалуйста поподробнее
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пряничников Александр.
x^2+(b+1)x+b^2=1.5
x^2+(b+1)x+b^2-1.5=0
По т. Виета,
x1+x2=-(b+1),
x1*x2=b^2-1.5
Отсюда можно выразить x1^2+x2^2:
x1^2+x2^2 = (x1+x2)^2-2*x1*x2 = (-(b+1))^2-2*(b^2-1.5) =
b^2+2b+1-2b^2+3 = -b^2+2b+4.
Получим, что сумма квадратов корней исходного уравнения изменяется квадратично в зависимости от b: 
f(b)=-b^2+2b+4 - парабола с ветвями вниз, имеющая наибольшее значение в вершине.
b верш = -2/(2*(-1))=1.
То есть при b=1 сумма квадратов корней исходного уравнения является наибольшей.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос