
Вопрос задан 08.01.2019 в 02:05.
Предмет Геометрия.
Спрашивает Ivanov Server-X.
В трапеции ABCD известно, что AD=8, BC=5, а её площадь равна 52. Найдите площадь трапеции BCNM, где
MN - средняя линия трапеции ABCD Помогите пожалуйста

Ответы на вопрос

Отвечает Стародумова Елена.
Sтр=(a+b)/2*h
1. находим высоту h=S/(a+b)*2 h=52/(5+8)*2=52/13*2=8
2. так как средняя линия трапеции равна половине суммы оснований то
MN=(5+8)/2=6,5 а высота трапеции BCMN равна половине высоты ABCD
значит Sтр BCMN =(5+6.5)/2*(8/2)=23 кв.см
1. находим высоту h=S/(a+b)*2 h=52/(5+8)*2=52/13*2=8
2. так как средняя линия трапеции равна половине суммы оснований то
MN=(5+8)/2=6,5 а высота трапеции BCMN равна половине высоты ABCD
значит Sтр BCMN =(5+6.5)/2*(8/2)=23 кв.см


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili