Вопрос задан 20.04.2018 в 22:45. Предмет Геометрия. Спрашивает Комаров Егор.

Напиши уравнение прямойax+by+c=0, все точки которой находятся в равных расстояниях от точек

A(4;2)иB(6;7). (Число в ответе сокращать не нужно!) ⋅x+ ⋅y+ =0 Ответить!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Спартак Кирилл.

Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ. Все точки этой прямой будут находится на равном расстоянии от точек А и В. 1) Напишем уравнение прямой, проходящей чнрез точки А и В; у=к*х+в; 2=к*4+в; в=2-4к (1); 7=к*6+в; в=7-6к (2); 2-4к=7-6к; 2к=5; к=2,5; в=7-6*2,5=-8; у=2,5х-8; угловой коэффициент равен к=2,5; 2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5); 3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4; Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8: 4,5=5*(-0,4)+в; в=4,5+2=6,5; у=-0,4х+6,5; 0,4х+у-6,5=0;

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос