
Вопрос задан 02.01.2019 в 12:25.
Предмет Геометрия.
Спрашивает Коптев Максим.
В треугольнике АВС проведены биссектрисы АА1 и СС1. К и М – основания перпендикуляров, опущенных из
точки В на прямые АА1 и СС1. а) Докажите, параллельность прямых МK и АС. б) Найдите площадь треугольника КВМ, если известно, что АС=10, ВС=6, АВ=8. Ответ: 2,4.

Ответы на вопрос

Отвечает Ринчинов Ваня.
Продлим BK и BM до пересечения c AC в точках P и Q соответственно. Тогда AK - биссектриса и высота треугольника ABP, а значит ABP - равнобедренный (AB=AP) и AK - его медиана, т.е.BK=PK. Аналогично, для треугольника CBQ, CQ=BC и BM=QM, т.к. CM его высота и биссектриса. Таким образом, MK - средняя линия треугольника QBP, т.е. MK||AC, что доказывает пункт а).
CP=AC-AP=AC-AB=10-8=2
AQ=AC-CQ=AC-BC=10-6=4
Значит, QP=AC-CP-AQ=10-2-4=4.
Итак, если обозначить через h высоту треугольника ABC, проведенную к AC, то S(KBM)=MK*(h/2)/2=(QP/2)*h/4=QP*h/8. Т.к. ABC - прямоугольный (6^2+8^2=10^2), то h=6*8/10=4,8, т.е. S(KBM)=4*4,8/8=2,4.
CP=AC-AP=AC-AB=10-8=2
AQ=AC-CQ=AC-BC=10-6=4
Значит, QP=AC-CP-AQ=10-2-4=4.
Итак, если обозначить через h высоту треугольника ABC, проведенную к AC, то S(KBM)=MK*(h/2)/2=(QP/2)*h/4=QP*h/8. Т.к. ABC - прямоугольный (6^2+8^2=10^2), то h=6*8/10=4,8, т.е. S(KBM)=4*4,8/8=2,4.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili