Вопрос задан 01.01.2019 в 00:32. Предмет Геометрия. Спрашивает Левичева Катя.

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности,

если угол между касательными равен 60, а расстояние от точки А до точки О равно 6
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галимова Ангелина.

Соединяем точки О и А, затем проводим касательные, отмечаем точки В и С, соединяем их. Проводим линию от О до В. Продолжим сторону АВ до пересечерия с диаметром, проведенным перпендикулярно ОА. Отметим на пересечении точку М. Угол САВ равен 60, значит угол ОАМ 30 градусов, у нас прямоугольный треугольник с углом 30 градусов. Обозначим ОМ = х, значит АМ 2х, ОА по условию 6, по теореме пифагора находим ОМ и АМ. теперь у нас треугольник ОВМ, угол МОВ 30 градусов. Значит МВ - половина ОМ, также по теореме пифагора находим ОВ - радиус, получаем 3.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос