
Вопрос задан 13.12.2018 в 08:20.
Предмет Геометрия.
Спрашивает Шиморова Настя.
Отрезок BD - диаметр окружности с центорм O . Хорда АС делит пополам радиус OB и перпендикулярна к
нему . Найдите углы четырехугольника ABCD и градусные меры дуг AB, BC, CD, AB .

Ответы на вопрос

Отвечает Костюкевич Назар.
Пусть К - точка пересечения хорды AC и диаметра BD.
OK=KB=R\2
OA=OB=OC=OD=R=AB=BC
AD=BD=корень((корень(3)*R\2)^2+(3*R\2)^2)=корень(3)*R
AK=BK=корень(3)\2*R
cos (KOA)=(R\2)\R=1\2
угол KOA=угол OBA=угол OBC=60 градусов
угол ФИС=60+60=120 градусов
В выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол ADB=180-120=60 градусов
Угол BAD= углу BCD=180\2=90 градусов
градусные меры дуг AB, BC, CD, AD... соотвественно равны углвой мере углов AOB(=60 градусов), BOC (=60 градусов), COD(180-60=120 градусов)
AOD (=120 градусов)
вроде так*


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili