Вопрос задан 09.12.2018 в 01:08. Предмет Геометрия. Спрашивает Зобнин Игорь.

Высота и радиус цилиндра соответственно равны 15 и 5. Отрезок АВ=17 имеет концы на окружностях

оснований цилиндра. Найдите расстояние от этого отрезка до оси цилиндра
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бердибаева Бекзада.

Так как АВ больше высоты цилиндра,  АВ наклонная, она и ось цилиндра лежат в разных плоскостях и не пересекаются. Они - скрещивающиеся прямые

Цитата:" 

Для нахождения расстояния между скрещивающимися прямыми нужно:

- Найти плоскость, перпендикулярную одной из скрещивающихся прямых;

- Ортогонально спроектировать вторую прямую на эту плоскость;

- Из точки пересечения плоскости первой прямой опустить перпендикуляр на проекцию второй прямой."

   Ось цилиндра перпендикулярна плоскости основания. Расстоянием между АВ и осью цилиндра будет отрезок,  проведенный перпендикулярно от центра основания к проекции АВ. 

 Обозначим центр основания О. Опустим  перпендикуляр ВК к основанию.  

Хорда АК - проекция АВ на плоскость основания. ОА=ОК -радиусы. Треугольник АОК - равнобедренный. ОН - его медиана и высота. 

АК- катет прямоугольного ∆ АВК и по т.Пифагора равен 8 ( его стороны составляют одну из троек Пифагора) 

АН=АК:2=4

∆ АОН прямоугольный, отношение АН:ОА=4:5 - это "египетский" треугольник, и искомое расстояние ОН=3 ( можно проверить по т.Пифагора). 


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос