Вопрос задан 13.10.2018 в 20:45. Предмет Геометрия. Спрашивает Марченкова Соня.

Помогите! Задача:Вычислить площадь равнобедренного треугольника с основанием 10 см и боковой

стороной 12 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Esenov Miyrzhan.

Чертишь высоту к основанию(тк треугольник равнобокий, то она и медиана) то половина осноаания равна 5 . Потом находишь высоту по теореме Пифагора. И  находишь площадь по формуле 1\2 * высота * основание

0 0
Отвечает Скурихин Никита.

1) Проведем высоту BH. она будет являтся медианой т.к. треугольник р/б.

2)Рассмотрим ABH

По теореме пифагора

AB^2 = BH^2 + AH^2

BH^2 = 144-25 = 119

BH = sqrt119

3)S = 1/2a*h = 1/2 * 10 * sqrt119 = 5sqrt119

Ответ: 5sqrt119

p.s. sqrt = корень


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления площади равнобедренного треугольника с основанием 10 см и боковой стороной 12 см, можно воспользоваться формулой площади треугольника.

Формула площади треугольника

Площадь треугольника можно вычислить, зная длину основания и высоту, опущенную на это основание. Так как в данной задаче не указана высота треугольника, можно воспользоваться теоремой Пифагора для нахождения высоты.

Теорема Пифагора утверждает, что в прямоугольном треугольнике с гипотенузой `c` и катетами `a` и `b` выполняется следующее равенство:

a^2 + b^2 = c^2

В нашем случае треугольник равнобедренный, поэтому мы можем разделить его пополам, получив два прямоугольных треугольника. Основание треугольника равно 10 см, а боковая сторона равна 12 см. Пусть x - это половина основания треугольника, а h - высота треугольника. Тогда у нас есть следующие равенства:

x^2 + h^2 = 12^2 2x = 10

Решая эту систему уравнений, мы можем найти значения x и h. Получив значения x и h, мы можем найти площадь треугольника, используя формулу:

S = (1/2) * (основание) * (высота)

Вычисление площади треугольника

Для начала найдем значения x и h:

2x = 10 x = 5

x^2 + h^2 = 12^2 5^2 + h^2 = 144 h^2 = 144 - 25 h^2 = 119 h = sqrt(119) ≈ 10.92

Теперь, когда у нас есть значения основания (10 см) и высоты (приблизительно 10.92 см), мы можем вычислить площадь треугольника:

S = (1/2) * (10) * (10.92) S ≈ 54.6 см²

Таким образом, площадь равнобедренного треугольника с основанием 10 см и боковой стороной 12 см составляет примерно 54.6 квадратных сантиметра.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос