
Дан треугольник АВС AD биссиктриса AD=DC уголС=20 градусов Найти углы АВС.


Ответы на вопрос

Так как АД = ДС , значит треугольник АДС равнобедренный. В равнобедренном треугольнике углы при основании равны, значит угол ДАС = углу С = 20 градусов. Так как АД биссектрисса, то угол А = 40 градусов. Угол В = 180 - (А+С), угол В = 180-(40+20) = 120 градусов.
Ответ: А = 40, В = 120, С = 20



Given Information:
We are given a triangle ABC, where AD is the bisector of angle C, AD = DC, and angle C = 20 degrees. We need to find the angles of triangle ABC.Solution:
To find the angles of triangle ABC, we can use the properties of triangles and the given information.Let's denote angle A as A, angle B as B, and angle C as C.
From the given information, we know that AD is the bisector of angle C and AD = DC. This implies that angles ADB and ADC are congruent. Therefore, angle ADB = angle ADC.
Using the property of angles on a straight line, we know that the sum of angles ADB and ADC is 180 degrees. So, we can write:
ADB + ADC = 180 degrees
Since angle ADB = angle ADC, we can rewrite the equation as:
2 * ADB = 180 degrees
Simplifying the equation, we find:
ADB = 90 degrees
Now, we can use the fact that the sum of angles in a triangle is 180 degrees. So, we have:
ADB + A + B = 180 degrees
Substituting the value of ADB, we get:
90 degrees + A + B = 180 degrees
Simplifying the equation, we find:
A + B = 90 degrees
Since angle C is given as 20 degrees, we can write:
A + B + C = 90 degrees + 20 degrees
Simplifying the equation, we find:
A + B + C = 110 degrees
Now, we have two equations:
1. A + B = 90 degrees 2. A + B + C = 110 degrees
Subtracting equation 1 from equation 2, we get:
C = 20 degrees
Substituting the value of C in equation 1, we find:
A + B = 90 degrees - 20 degrees
Simplifying the equation, we find:
A + B = 70 degrees
Now, we have two equations:
1. A + B = 70 degrees 2. A + B + C = 110 degrees
Subtracting equation 1 from equation 2, we get:
C = 40 degrees
Finally, substituting the value of C in equation 1, we find:
A + B = 70 degrees - 40 degrees
Simplifying the equation, we find:
A + B = 30 degrees
Therefore, the angles of triangle ABC are:
A = 30 degrees B = 40 degrees C = 20 degrees
Answer:
The angles of triangle ABC are: A = 30 degrees B = 40 degrees C = 20 degrees

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili