Вопрос задан 17.08.2018 в 21:22. Предмет Геометрия. Спрашивает Городецкая Катя.

В правильной треугольной пирамиде радиус вписанной в основание окружности равен √3 см, а её апофема

равна √51 см. Вычислить объем пирамиды
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чекрыгин Миша.
Радиус окружности, вписанной в правильный треугольник r =кв.корень из 3 *a/3, отсюда a (сторона треугольника) = 6см. По теореме Пифагора найдем высоту пирамиды. корень из 51 в квадрате - корень из 3 в квадрате = 51-3= высота в квадрате. H=корень из 48 = 4*корень из 3.
S основания = 9*корень из 3.
V= 9*корень из 3* 4*корень из 3=108 куб. см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, нам понадобятся некоторые свойства правильной треугольной пирамиды.

Свой

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос